THE STUDY OF BULK MATERIAL KINEMATICS IN A SCREW CONVEYOR-MIXER

Hewko B.M., Popovich P.V., Diachun A.Y., Lyashuk O.L., Liubachivskyi R.O.
Ternopil Ivan Pu‘uł National Technical University, Ruska str., 56, Ternopil, Ukraine
E-mail: Oleg-lashyk@rambler.ru

Abstract: Based on the equation of motion in a screw conveyor-mixer, the kinematics of bulk material is researched. The motion of bulk material in medium speed operation mode of screw conveyor-mixer is analyzed in details. The technique of determining the nature of loading the screw conveyor elements is developed. The analytical dependences for determining the speed change of the given bulk material volume in relation to a casing in medium speed mode of conveyor while mixing the bulk material are developed. This technique can be widely used for designing the screw transport and technological systems.

Key words: screw working body, screw conveyor, auger, bulk material.

INTRODUCTION

Nowadays screw conveyors are widely used for technological transporting and mixing the bulk materials. These conveyors are characterized by simplicity of their design. They are highly reliable, easy to use and easy to adapt when used in automated systems, and they are ecologically friendly as well [7,8,9]. To cut down power consumption and to increase the quality of mixing the bulk materials, a number of screw mixers’ original designs are developed. The use of the working body depends on the peculiarities of bulk material loading the auger as well as on the peculiarities of the nature of bulk material motion, and the practicability of using the auger working body.

The advantages of using such augers include the increase of load coefficient in the area of transporting the bulk material from a tanker into auger that leads to the increase of conveyor’s productivity.

Analysis of recent research and publications

The works of Grygoryev A.M. [2], Hewko B.M., Rohatynskyi R.M. [4, 5, 6], Hewko I.B. [3, 6] and others are dedicated to the issue of transporting and mixing different materials.

However, taking into account the diversity of technological processes and structural designs of screw transport and technological mechanisms (STTM), this issue requires further research and refinement of various parameters of theoretical and practical importance.

The objective is to develop engineering methods of computing the screw conveyor-mixer operation mode with a choice of kinematic and dynamic parameters that minimize their power consumption.

Резюме: Приведено дослідження кінематики сипкого матеріалу на основі рівняння руху у гвинтовому конвеєрі-змішувачі. Проведено детальний аналіз руху сипкого матеріалу у середньошвидкісному режимі гвинтового конвеєрі-змішувачі і розроблено методику встановлення характеру навантаження на елементи гвинтового конвеєра, виведено аналітичні залежності для визначення зміни швидкості руху виділеного об’єму сипкого матеріалу відносно кожуха у середньошвидкісному режимі конвеєра під час змішування сипкого матеріалу, що можна широко використовувати при проектуванні гвинтових транспортно-технологічних систем.

Ключові слова: гвинтовий робочий орган, гвинтовий конвеєр, шнек, сипкий матеріал.

ПЕРЕРЕДМОВА

Для технологічних операцій переміщення і змішування сипких матеріалів велике розповсюдження набули гвинтові конвеєри, які характеризуються простотою конструкції та, відповідно, високою надійністю, прості в користуванні та легкістю адаптування при використанні в автоматизованих системах, екологічністю використання [7,8,9]. Для зменшення енергетичних витрат і підвищення якості змішування сипких матеріалів розроблено ряд оригінальних конструкцій гвинтових змішувачів. Заставляючи таких шнеків потребує вирішення питань, пов’язаних з особливостями визначення навантажень на робочий орган та характеру руху сипкого матеріалу, а також доцільності їх використання.

До переваг застосування таких шнеків можна віднести збільшення коефіцієнта завантаження у зоні переміщення сипкого матеріалу із бункера на шнек, що призводить до зростання його продуктивності.

Аналіз останніх досліджень і публікацій

Питаннями транспортування і змішування різних матеріалів присвячені праці Григор’єва А.М. [2], Гевко Б.М., Рогатинського Р.М. [4, 5, 6], Гевко І.Б. [3, 6] і інших.

Однак, враховуючи різноманітність технологічних процесів і конструктивного виконання гвинтових транспортно-технологічних механізмів (ГТТМ), потребує подальших досліджень та уточнення різних параметрів теоретичного й практичного значення.

Мета роботи є розроблення інженерної методики розрахунку середньошвидкісному режимі гвинтового конвеєра-змішувачі з вибором кінематичних та динамічних параметрів, які мінімізують їх енергоемність.
MATERIAL AND METHOD

To mix the bulk material effectively, the conveyor should work in the medium speed mode, this is the characteristic feature of screw conveyor-mixers (fig. 1).

Based on experimental research it is proved that the material in the cross section of conveyor casing is lifted to the upper point and falls on the inner surface of the cylindrical casing under the force of gravity, repeating the cycle by the cycle.

The motion trajectories of the given bulk material volume in the cross section of conveyor casing in the fast- and medium speed modes are compared in fig. 2.

The angular parameter θ is determined by the nature of bulk material motion during the screw conveyor operation.

To determine the nature of bulk material transportation, the motion of the given bulk material volume along the coordinates xyz (fig. 1) should be considered.

When the conveyor operates in the medium speed mode, the bulk material is mixed and transported simultaneously.

Taking into account the contact of the given bulk material volume A with the auger’s screw surface and the cylindrical surface of the casing, the placement is determined by the radial parameter R and the angular parameter θ.

МАТЕРИАЛ І МЕТОДИКА

Особливістю гвинтових конвеєрів-змішувачів (рис. 1.) є те, що для ефективного змішування сипкого матеріалу конвеєр повинен працювати у середньошвидкісному режимі.

При цьому на основі експериментальних досліджень встановлено, що матеріал у поперечному перерізі кожуха конвеєра піднімається до верхньої точки і під дією ваги падає на внутрішню циліндричну поверхню кожуха, повторюючи наступний цикл.

Порівняння траєкторій руху виділеного об’єму сипкого матеріалу у поперечному перерізі кожуха конвеєра при швидкісному та середньошвидкісному режимах представлено на рис. 2.

Під час роботи гвинтового конвеєра кутовий параметр θ визначається особливостями руху сипкого матеріалу.

Для встановлення характеру переміщення сипкого матеріалу розглянемо рух виділеного об’єму сипкого матеріалу в координатах xyz (рис. 1).

Розглянемо середньошвидкісний режим роботи конвеєра, при якому відбувається одночасне змішування та транспортування сипкого матеріалу.

Із умови контакту виділеного об’єму сипкого матеріалу A з гвинтовою поверхнею шнека та циліндричною поверхнею кожуха, її розміщення визначається радіальним параметром R і кутовим параметром θ.

Fig. 1. - Computation scheme of transporting the given bulk material volume in the inclined screw conveyor:

1 - drive shaft; 2 – screw working body; 3 – given bulk material volume; 4 – casing; 5 – trajectory of bulk material motion in the medium speed mode (mode of transporting and mixing)
In parametric form, with sufficient approximation, the coordinates of the given bulk material volume A are determined by the dependences:

\[
\begin{align*}
 x_A &= (R - d) \cdot \cos \theta + d \cos^2 \theta; \\
 y_A &= R \cdot \sin \theta; \\
 z_A &= \frac{T_0}{2\pi} (\omega t - \theta).
\end{align*}
\]

Where:
- x_A, y_A, z_A – coordinates of the given bulk material volume, m;
- R – radial parameter of the given bulk material volume, m;
- θ – angular parameter of the given bulk material volume, rad;
- ω – angular speed of working body rotation, rad/s;
- t – time, s;
- d – parameter that determines the displacement of motion trajectory of the given bulk material volume in medium speed mode as compared with the fast speed mode, T_0 - step, mm.

Parameter d is the function of angular speed of working body rotation, the inner radius of casing, and the transported material properties. The angular speed of working body rotation increases, the parameter d decreases. The inner radius of casing increases, the parameter d increases as well. In fast speed mode $d=0$, this parameter can be determined with the use of parametrical dependences based on experimental research.

Motion speeds of the given bulk material volume related to the auger along the axes x, y, z:

\[\text{В параметричному вигляді, з достатньою}
\]
where \(x_A, y_A, z_A \), projections of motion speed of
the given bulk material volume on the axes of
coordinates xyz, m/s.
\(x_{1u}, y_{1u}, z_{1u} \) – projections of motion speed of the
working body on the axes of coordinates xyz, m/s.

As the casing is motionless, the motion speeds of the
given bulk material volume related to the casing along
the axes x, y, z equal:

\[
\begin{align*}
\dot{x}_1 &= x_A - x_{1u}; \\
\dot{y}_1 &= y_A - y_{1u}; \\
\dot{z}_1 &= z_A - z_{1u};
\end{align*}
\]

(2)

The projections of motion speed of the given bulk
material volume are defined by differentiating the
equation (1) for the general case, when \(R \neq \text{const} \):

\[
\begin{align*}
\dot{x}_A &= \frac{d(R-d)}{dt} \cos \theta - (R-d) \cdot \sin \theta \cdot \frac{d\theta}{dt} + \frac{d(d)}{dt} \cos^2 \theta - 2d \cos \theta \sin \theta \frac{d\theta}{dt}; \\
\dot{y}_A &= \frac{dR}{dt} \sin \theta + R \cdot \cos \theta \cdot \frac{d\theta}{dt}; \\
\dot{z}_A &= \frac{T}{2\pi} \left(\omega - \frac{d\theta}{dt} \right).
\end{align*}
\]

(4)

Motion speed of screw working body is determined by
dependences:

\[
\begin{align*}
\dot{x}_{1u} &= R \cdot \omega \sin \theta; \\
\dot{y}_{1u} &= R \cdot \omega \cos \theta; \\
\dot{z}_{1u} &= 0.
\end{align*}
\]

(5)

According to (2) and taking into account the
dependences (4) and (5), we develop the formulas:

\[
\begin{align*}
\dot{x}_1 &= \frac{d(R-d)}{dt} \cos \theta + R \cdot \sin \theta \left(\omega - \frac{d\theta}{dt} \right) + \frac{d(d)}{dt} \cos^2 \theta - 2d \cos \theta \sin \theta \frac{d\theta}{dt}; \\
\dot{y}_1 &= \frac{dR}{dt} \sin \theta - R \cdot \cos \theta \left(\omega - \frac{d\theta}{dt} \right); \\
\dot{z}_1 &= \frac{T}{2\pi} \left(\omega - \frac{d\theta}{dt} \right).
\end{align*}
\]

(6)

\[\text{where } x_A, y_A, z_A \text{ - проекції швидкості руху виділеного об’єму сипкого матеріалу на осі координат хуз, м/с; } \]
\[x_{1u}, y_{1u}, z_{1u} \text{ - проекції швидкості руху шнека на осі координат хуз, м/с.} \]

Оскільки кожух нерухомий, то швидкості руху виділеного об’єму сипкого матеріалу відносно кожуха в напрямку осей х, у, z дорівнюють:

\[
\begin{align*}
\dot{x}_2 &= x_A; \\
\dot{y}_2 &= y_A; \\
\dot{z}_2 &= z_A.
\end{align*}
\]

(3)

Проекції швидкостей руху виділеного об’єму сипкого матеріалу знаходимо, диференціюючи рівняння (1) для загального випадку, коли \(R \neq \text{const} \):

\[
\begin{align*}
\dot{x}_A &= \frac{d(R-d)}{dt} \cos \theta - (R-d) \cdot \sin \theta \cdot \frac{d\theta}{dt} + \frac{d(d)}{dt} \cos^2 \theta - 2d \cos \theta \sin \theta \frac{d\theta}{dt}; \\
\dot{y}_A &= \frac{dR}{dt} \sin \theta + R \cdot \cos \theta \cdot \frac{d\theta}{dt}; \\
\dot{z}_A &= \frac{T}{2\pi} \left(\omega - \frac{d\theta}{dt} \right).
\end{align*}
\]

(4)

Швидкість руху гвинтового робочого органу визначаємо за залежностями:

\[
\begin{align*}
\dot{x}_{1u} &= R \cdot \omega \sin \theta; \\
\dot{y}_{1u} &= R \cdot \omega \cos \theta; \\
\dot{z}_{1u} &= 0.
\end{align*}
\]

(5)

Згідно з (2), враховуючи залежності (4) і (5), знаходимо:
The modules of motion speed of the given bulk material volume are determined by formulas:

\[
\begin{align*}
|\dot{s}_1| &= \sqrt{x_1^2 + y_1^2 + z^2} \\
|\dot{s}_2| &= \sqrt{x_A^2 + y_A^2 + z^2}.
\end{align*}
\]

(7)

(8)

Inserting the equations (4) and (6) into (7) and (8), and hypothesizing that the casing has a cylindrical shape with \(R = \text{const}; d = \text{const} \), after the cuts, we get the formulas:

\[
\begin{align*}
|\dot{s}_1| &= \sqrt{\left(R^2 + \frac{T_0^2}{4\pi^2}\right)\left(\omega - \frac{d\theta}{dt}\right)^2 + 2Rd\sin^2\theta \left(\omega - \frac{d\theta}{dt}\right)\left(1 - 2\cos\theta\right) + d^2\sin^2\theta \left(\frac{d\theta}{dt}\right)^2 (1 - 2\cos\theta)^2} \\
|\dot{s}_2| &= \sqrt{R^2 \left(\frac{d\theta}{dt}\right)^2 + \frac{T_0^2}{4\pi^2} \left(\omega - \frac{d\theta}{dt}\right)^2 + 2Rd\sin^2\theta \left(\frac{d\theta}{dt}\right)^2 \left(1 - 2\cos\theta\right) + d^2\sin^2\theta \left(\frac{d\theta}{dt}\right)^2 (1 - 2\cos\theta)^2}.
\end{align*}
\]

(9)

(10)

The acceleration of the given bulk material volume is determined by differentiating the equation (6) when \(R = \text{const}; d = \text{const} \).

\[
\begin{align*}
\ddot{x} &= R\cos\theta \frac{d\theta}{dt} \left(\omega - \frac{d\theta}{dt}\right) - R\sin\theta \frac{d^2\theta}{dt^2} + d\cos\theta \frac{d^2\theta}{dt^2} + d\sin\theta \frac{d^2\theta}{dt^2} + \\
&+ 2d \left(\sin^2(\theta) \frac{d^2\theta}{dt^2} - \cos^2(\theta) \frac{d^2\theta}{dt^2} - 2\cos\theta\sin\theta \frac{d^2\theta}{dt^2}\right); \\
\ddot{y} &= R\sin\theta \frac{d\theta}{dt} \left(\omega - \frac{d\theta}{dt}\right) + R\cos\theta \frac{d^2\theta}{dt^2}; \\
\ddot{z} &= -\frac{T_0}{2\pi} \frac{d^2\theta}{dt^2}.
\end{align*}
\]

(11)

RESULTS

The numerical and experimental research as well as the research presented in the work \[8\] prove that the stable mode of transportation is set regardless of the initial conditions of transportation after the passage of transitional mode zone.

The stable mode of transportation in medium speed mode of conveyor (fig.3) should be considered, In this

РЕЗУЛЬТАТИ

Результати числових та експериментальних досліджень, а також досліджень, представлених в роботі \[8\] свідчать, що незалежно від початкових умов транспортування після проходження зони перехідного режиму встановлюється стабільний режим транспортування.

Розглянемо стабільний режим транспортування у середньошвидкісному конвеєрі (рис. 3), в якому
mode the bulk material is transported along the complex screw trajectory; and when the bulk material is lifted to the upper point, the following conditions are actual:

\[
\frac{d\theta}{dt} = \text{const}, \quad \frac{d^2\theta}{dt^2} = 0, \quad \frac{dR}{dt} = 0, \quad R = \text{const}, \quad \frac{d\omega}{dt} = 0, \quad \omega = \text{const}, \quad d = \text{const},
\]

where \(\omega \) - angular speed of working body rotation, \(\text{rad/s} \).

Fig. 3. - Motion trajectory of the given bulk material volume in medium speed mode of conveyor \(R=55 \text{ mm}, \omega=15 \text{ rad/s} \).

Under the acceptable conditions from (6), the projections of motion speed of the given bulk material volume related to the auger on the axis of coordinate system \(xyz \) can be developed:

\[
\begin{align*}
\dot{x}_1 &= R \cdot \sin (\omega t) \cdot (\omega - \omega_a) + d \sin (\omega t) \omega_a - 2d \cos (\omega t) \sin (\omega t) \omega_a; \\
\dot{y}_1 &= -R \cdot \cos (\omega t) \cdot (\omega - \omega_a); \\
\dot{z}_1 &= \frac{T_a}{2\pi} (\omega - \omega_a).
\end{align*}
\]

(12)

Projections of motion speed of the given bulk material volume related to the casing on the axis of coordinate system \(xyz \):

\[
\begin{align*}
\dot{x}_2 &= (R-d) \cdot \sin (\omega t) \cdot \omega_a - 2d \cos (\omega t) \sin (\omega t) \omega_a; \\
\dot{y}_2 &= R \cdot \cos (\omega t) \cdot \omega_a; \\
\dot{z}_2 &= \frac{T_a}{2\pi} (\omega - \omega_a).
\end{align*}
\]

(13)
Modules of motion speed of the given bulk material volume are determined by formulas:

\[
\frac{\dot{s}_1}{\dot{s}_2} = \sqrt{R^2 + \frac{T_0^2}{4\pi^2}} \right)\left((\omega - \omega_a)^2 + 2Rd \sin^2(\omega_a)(\omega - \omega_a)(1 - 2\cos(\omega_a)) + d^2 \sin^2(\omega_a)(\omega_a)^2 (1 - 2\cos(\omega_a))^2 \right) \tag{14}
\]

\[
[\frac{\dot{s}_2}{\dot{s}_2}] = \sqrt{R^2(\omega_a)^2 + \frac{T_0^2}{4\pi^2}} \left((\omega - \omega_a)^2 + 2Rd \sin^2(\omega_a)(\omega_a)^2 (1 - 2\cos(\omega_a)) + d^2 \sin^2(\omega_a)(\omega_a)^2 (1 - 2\cos(\omega_a))^2 \right) \tag{15}
\]

Based on the formula (15), the graphics of changing the motion speed of the given bulk material volume in time related to the casing in medium speed mode of conveyor (fig. 4) are developed:

![Graphs](image)

Fig. 4. - Graphics of changing the motion speed of the given bulk material volume in time related to the casing in medium speed mode of conveyor \(R=0.055m, T_0=0.11m \): 1 - \(n=90rpm \); 2 - \(n=120rpm \); 3 - \(n=150rpm \)

Acceleration of the given bulk material volume is determined by equations:

\[
\begin{align*}
\ddot{x} &= R\omega_a \cos(\omega_a t)(\omega - \omega_a); \\
\ddot{y} &= R\omega_a \sin(\omega_a t)(\omega - \omega_a); \\
\ddot{z} &= 0.
\end{align*}
\]
Based on the graphics in Fig. 4 we conclude that the speeds of bulk material transportation periodically change when the screw conveyor in medium speed mode are used. This fact intensifies the process of mixing.

CONCLUSIONS
1. The engineering technique of determining the nature of loading on the elements in medium speed mode of screw conveyor, on the casing and the screw working body in particular is developed. The speeds of bulk material transportation periodically change when the augers with axis motion are used. This fact improves the process of mixing the bulk materials.
2. The analytical dependences to determine the parameters during transportation of the given bulk material are developed. These dependences can be widely used in designing the screw transport and technological systems.

REFERENCES

На основі графіків рис. 4 можна зробити висновки, що при застосуванні гвинтових конвеєрів на середньошвидкісних режимах відбувається періодична зміна швидкості переміщення сипкого матеріалу, що сприяє інтенсифікації процесу змішування.

ВИСНОВОК
1. Розроблено інженерну методику встановлення характеру навантаження на елементи на середньошвидкісному режимі гвинтового конвеєрів: на кожух та на гвинтовий робочий орган. Встановлено, що при застосуванні шнеків з осьовим рухом відбувається коливання швидкості транспортування, що покращує умови змішування сипких матеріалів.
2. Виведено аналітичні залежності для визначення параметрів під час переміщення виділеного об’єму сипкого матеріалу, що можна широко використовувати при проектуванні гвинтових транспорто-технологічних систем.

БІБЛІОГРАФІЯ
[5] Рогатинский Р. М. (1997) – Механіко-технологічні основи взаємодії шнекових робочих органів з сировиною сільськогосподарського виробництва : дис. докт. техн. наук : 05.20.01, 05.05.05 / Рогатинский Роман Михайлович. – 502с., Київ.